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A previously derived analytical formulation of the n-particle relativistic momentum 
phase space integral in invariant variables is simplified. The final equations are eminently 
suited to machine evaluation and have been incorporated into a Monte Carlo computer 
program (described elsewhere). The main new feature of this work is the derivation of a 
set of recurrence relations that allows for the rapid evaluation of dependent invariants in 
terms of independent ones even in the exceptional regions of the physical region. 

1. INTRODUCTION 

A problem often encountered in theoretical studies of elementary particle inter- 
actions is the numerical evaluation of a momentum phase space integral whose 
integrand contains the absolute square of some transition matrix element. Another 
problem, closely related to this evaluation, is the determination of differential cross 
sections with respect to certain observables of interest. The choice of these observables 
will quite likely differ from study to study. 

The actual evaluation of the multiple phase space integral and of differential cross 
sections of interest can be done conveniently by a Monte Carlo method in which 
values of the integration variables (independent variables) are generated randomly 
according to some specified distribution. Additional variables of posible physical 
interest (dependent variables) are then computed from the randomly generated 
independent ones. A useful phase space integration program is then one that satisfies 
two obvious requirements: (i) event generation should be efficient and (ii) evaluation 
of any dependent variable should be rapid and accurate. 

Over the years much attention [I] has been given to requirement (i). Various 
algorithms and programs have been developed to increase the efficiency of event 
generation. Often the programs are tailored to a specific type of physical process, e.g., 
multiperipheral reactions [2]. Less attention has been given to requirement (ii). The 
emphasis in the present work is on this second requirement. In fact the method 
presented here for the generation of events, i.e., the random selection of values of the 
independent variables, is not new; it is identical to that used by Byckling and Kajantie 
[2]. Nevertheless it is described below because it has a bearing on the approach used 
to meet requirement (ii). 
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Basically in this paper a systematic procedure is presented for the numerical evalua- 
tion of the n-particle relativistic momentum phase space integral and the evaluation of 
numerous dependent quantities using, insofar as possible, invariant Mandelstam 
variables (taken to be squares of sums of adjacent Cmomenta as in Fig. 1). A Monte 
Carlo computer program based on this algorithm has been written. It is described in 
detail elsewhere [3]. 

FIG. 1. The n-particle process i + 2 -+ 3 + 4 + .** + n illustrating the ordering of the particles 
and identifying the invariants. 

The groundwork for the present development was laid several years ago [4]. 
In that paper (hereafter referred to as M) it was shown not only how the phase 
space integral could be expressed in terms of an independent subset of 3n - 10 
Mandelstam invariants but also how the remaining (n - 4)(n - 5)/2 dependent 
Mandelstam invariants could be expressed in terms of the independent ones. This 
latter demonstration was nontrivial since the dependent invariants depend on the 
independent ones in a nonlinear fashion [5]. 

Similar analytical treatments have been given by Poon [6] and, insofar as the inde- 
pendent invariants are concerned, by Byckling and Kajantie [2]. In the latter case 
the laboratory 3-momenta of all particles are also calculated, in terms of the indepen- 
dent variables. Presumably any desired dependent quantity is then evaluated from its 
definition in terms of momentum components in some Lorentz frame. Byckling ef al. 
[7] have further developed their approach into a computer subprogram meant to be 
incorporated into the CERN program FOWL [8]. The distinction between this 
approach and the present one is that laboratory 3-momenta are used in the former 
while dependent Mandelstam invariants are used in the latter as intermediary quanti- 
ties between the generation of independent variables and the evaluation of variables 
of physical interest. (Of course, the 3-momenta and the independent Mandelstam 
invariants may themselves be of physical interst.) 

In attempting to develop a computer program based on the earlier phase space 
work [4] it was found that the nonlinear expressions relating dependent to independent 
invariants led to large numerical inaccuracies for certain values of the independent 
invariants. These values turn out to lie close to the exceptional regions [9] of the 
physical region. Such regions are characterized by Cmomenta, which are generally 
linearly independent, becoming linearly dependent, e.g., the forward direction in two- 
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particle to two-particle scattering. The main new contribution of the present paper is 
to describe a compact iterative procedure for evaluating the dependent invariants 
which is useful even in the exceptional regions. 

As should be clear from the foregoing the variables chosen here to characterize a 
multiparticle event are invariants. Reasons for choosing these, at least as far as event 
generation is concerned, have been given by Byckling and Kajantie [2]. Essentially 
these variables, and most particularly the invariant Cmomenta transfers, are useful 
in high-energy collisions because they allow for convenient generation of events in 
those regions of phase space of physical importance-where transverse momenta are 
small. Thus the probram to be described is directed mainly at these processes. Further- 
more it is in precisely these processes that physical events predominate close to the 
exceptional regions. Even within this context additional advantages accrue from the 
use of invariant variables, stemming basically from the versatility inherent in invariant 
variables, that is, variables that do not refer to any specific frame. For once a randomly 
generated event has been labeled by values of all (3n - IO) + (n - 4)(n - 5)/2 = 
n(n - 3)/2 Mandelstam variables these variables can be used to calculate values of 
physical observables. For example, the momenta components of any or all of the 
participating particles can be determined in any Lorentz frame directly from the 
invariants. Also, Toller angles which are involved in multi-Regge amplitudes [IO] 
can be found easily thus allowing differential cross sections with respect to these 
angles to be determined. All of these quantities depend on the dependent as well as 
independent Mandelstam variables. Another use of the dependent Mandelstam 
variables arises when multiparticle amplitudes are symmetrized with respect to identical 
outgoing particles. The symmetrized amplitude will depend on dependent invariants 
even if the initially unsymmetrized amplitude involves only independent ones. 

It is apparent then that knowledge of the values of all Mandelstam variables allows 
great flexibility in the calculation of physical observables. It is of prime importance 
that the computation of these variables be fast and accurate. The description of a 
method for doing this is the main aim of the present work. Program run characteristics 
are given in [3]. 

In Sections 2 and 3 the analytical work of M is summarized in a new notation; 
Section 4 and Appendices A-D contain the new material. Readers interested only 
in the final phase space equations are directed to Section 5, where a guide to the text is 
presented. The final Appendix E contains examples of quantities of physical interest 
expressed in terms of invariant variables. 

2. PHASE SPACE INTEGRAL 

In scattering and production reactions of relativistic elementary particles both 
dynamic and kinematic effects enter to determine the momenta distribution of the 
outgoing particles. The dynamic effects are described theoretically by a transition 
matrix element while the kinematic effects are governed by the available volume in 
momentum space (phase space). 
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Consider a process in which two particles of Cmomenta p1 and & collide to produce 
it - 2 outgoing particles of Cmomenta pi (i = 3, 4,..., n) each with mass rn( such that 
pi2 = mi2, and with the particles labeled cyclically as in Fig. 1 (for later convenience 
when referring to the multiperipheral model). Then, following Bjorken and Drell [l 11, 
the invariant causal amplitude MPa is given in terms of the S-matrix by 

fi [(2+ 2Ej]-li2 Mea 
I i=l 

(1) 

with Ej = (pj2 + mj2)l12 and where spinless particles are assumed for convenience. 
The total cross section for the process is given by [ 11, 121 

u = [2(27~)~+lO X(s, m12, m22)1/2]-1 fi s d4pi 6(pi2 - 1fli2) e(P,“) 
id3 I 

x8 

with s = (ijr + p2)2, h(x, y, z) = x2 + y2 + z2 - 2xy - 2yz - 2zx, and off-shell 
4-momenta defined by pi = (pjo, pj). 

Preparatory to putting (2) entirely in terms of invariant variables define p1 = -p, 
and p2 = -p2 so that all momenta are outgoing for convenience and conservation of 
4-momentum reads Cy=, pj = 0. Then define the invariants (see Fig. 1) 

sij = Pfj = (Pi + pi+1 + -** + Pij2 for 1 < i < ,j < n. (3) 

Because of mass-shell and conservation of momentum constraints sLi = si+rn 
(i = 2, 3,..., n - 2), Sii = mi2 (i = 1, 2 ,..., n), sin = 0, slnWl = rnn2, s2n = m12, and 
so there are only n(n - 3)/2 invariant variables in the set (3). Of course because of 
the fact that momenta are four-dimensional (n - 4)(n - 5)/2 of these are dependent 
on the remaining 3n - 10 independent variables [5], exactly which ones are indepen- 
dent is a matter of choice. These Sij are the invariants dealt with in the present work. All 
other invariants formed from squares of sums of 4-momenta, such as (pl + p3 + P,)~, 
can be expressed in terms of the Sgj in a linear fashion [5]. 

In M it was shown both how the Byers and Yang [ 131 reformulation of (2) and 
how the conditions delimiting the physical region could be put entirely in terms of the 
sij invariants. In that paper Cayley determinants were used and the reaction studied 
wasn+i+2+3+... + (n - 1). These results will be transcribed to the present 
reaction using a slightly different notation. First define 

L sz 2”-U(1, 2,..., n - 1) = 2'2-1&711 ,p12 ,...,Pln-d 

where the RHS, the Gram determinant of the 4-vectors pl1 , p12 ,..., pin-1 , has 
pli . plj as its i, jth element. Consequently L can be viewed as the determinant of 
a symmetric matrix whose i, jth element is 

yij E @Ii * Plj = sli + slj - si+lj fori<j 
= 2s,i for i = j. (4) 
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By analogy to M let L(i, j,..., k) denote the principal minor of L with all rows and 
columns except i, j,..., k deleted and let V(i, j,..., k)lm denote the cofactor (signed 
minor) of the element ylrn of L(i, j,..., k). The relation of these determinants to the 
Cayley determinants used in M is simple: 

G(0, i, j ,..., k, n) = (- l)‘+lL(i, j ,..., k), 

F(0, i, j ,..., k, n)lm = (-l)GV(i,j ,..., k),, , 

where E is the number of rows (or columns) in L(i, j,..., k). 
Once these transcriptions have been carried out on the relevant equations in M a 

cyclic permutation 1 -+ 2, 2 -+ 3,..., II - 1 -+ 1 must be made on all indices in all 
resulting determinants to adapt these determinants to the reaction of present interest: 
i+Z+3+4+... + n. The reformulation of (2), as given by Eq. (22) of M for 
n >, 5, is then [14] 

x 
[ 
‘nfi / d&+,<+,[-L(l , i, i 1 1, i + 2)]-1/2 C ! MBa ~2 
i=2 II 

where x / MBa I2 = sum of / M,, I2 evaluated at all allowed values of the dependent 
invariants for fixed values of the independent ones. There are 2”-j terms in this sum 
as will be shown below. 

Furthermore the physical region conditions, which determine the ranges of the 
integration variables in Eq. (5), are obtained from Eqs. (I 2) and (17) of M [ 151: 

L(i, i + 1) < 0 involving sIi and sli+l for i= 1,2 ,..., n - 2, (6a) 
L(1, i, i + 1) > 0 limiting szi+r for i = 2, 3 ,..., n - 2, (6b) 
L(1, i, i. + 1, i + 2) < 0 limiting si+li+2 for i = 2, 3 ,..., IZ - 3, (6~) 
L(1, i, i + 1, i + 2, i + 3) = 0 determining si+li+3 for i = 2, 3 ,..., n - 4, (6d) 
V(1, i, i + 1, i $ 2, i + 3,j + 4)ij+4 = 0 determining s~+~+, 

forj = 2, 3 ,..., n - 5; 
i=23 2 - ’ ,...,I (6e) 

3. PHYSICAL REGION 

For ease of comprehension the determinantal conditions (6) are displayed as a 
pyramid structure in Fig. 2. The lower three rows of the pyramid involve determinants 
that are functions of the independent invariants only. Beginning with the fourth row 
of the pyramid and moving up more and more dependent invariants are involved. 

Any determinant in this pyramid is itself at the apex of a subpyramid as illustrated 
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V(1,2,3,4,5,n-1)*"-, 
=O 

V(1,2.3,4S,n-212n_2 V(1,3,4,5,6,n-l~n-, -0 

. . . . . . . . . ..L............ 

v(1,2,3,4,5,7127 . . V(1,n-6,n-5,n-4,n-3,n-1)n-6"-1 =o 

V(1,2,3,4,5,6)26 V(l,3,4,5,6,7)37. . V(l,n-5,n-4,n-3,n-2,n-l)n-jn-l =o 

L(1,2,3,4,5) L(1,3,4,5,6) L(l,4,5,6,7) . . . . . . L(l,n-4,~3,~2,~1) =o 

L(1,2,3,4) L(1,3,4,5) L(l,4,5,6) . . . . . . . . . . . . . . L(l,n-3,~2~1-1) 50 

L(l,2,31 L(1,?,4) L(1,4,5) . . . . . . . . . . . . . . . . . . . . . . . . . i(l,n-2,~1) 20 

L(1.2) L(2,3) L(3,4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L(n-2,~1) ~0 

FIG. 2. A pyramid structure attempting to show the interconnection of the physical region 
conditions given by Eqs. (6) in the text. 

for V(1, i, i + 1, i + 2, i + 3, j + 4)ij+4 in Fig. 3. Furthermore such a determinant 
depends on all invariants that occur in the other determinants lying in its subpyramid, 
plus one new invariant; in fact, these are the only invariants it depends on. 

It is therefore possible to impose conditions (6) in a systematic order such that in 
progressing from one determinant to the next only one new invariant is involved. A 
possible order (refer to Fig. 2) is to proceed from left to right across rows 1 (the bottom 
row), 2,3, and 4 in that order. To handle the cofactors begin again at the left in row 5 
but after treating one of the cofactors in this row move diagonally upwards to the left 
as far as possible before proceeding to the next cofactor in row 5. The final sequence 
thus encounters the cofactors at the extreme right in rows 5,6,..., and ends at the apex 
of the pyramid. This order will be followed below in solving (6). 

At each step in such a sequence the determinantal conditions (6) must be solved, 
thereby furnishing the ranges of the independent invariants and the values of the 
dependent invariants. The necessary expressions for the solutions of (6) are developed 
in Appendix A and are summarized in Appendix B. Equations (B3) and (B4) in 
particular will now be used to find the upper (+) and lower (-) integration limits of 
the independent invariants (6a, b, c) and the values of the dependent invariants 
6-t e). 

V(l,i,i+l,i+2,i+3,j+4)ij+4 =o 

V(l,i,1+1,i+Z,i+3,j+3).. ,3+3 V(l.i+l,it2,i+3,i+4.j+4)i+,j+4 =o 

. . . . . . . . . . . . . . . . . . . . 

V(1,i,i+l,i+2,i+3,i+5)ii+5 . V(l,j-l,jj+l,j+2,j+4)j-l j+4 =o 

V(1,i,i+l,i+2,i+3,i+4)ii+4 V(1,itl,i+2,i+3,i+4,i+5),+,i+5 . V(1,j,j+l.j+2.j+3.j+4)jj+4 =o 

L(l,i,itl,i+2,i+3)L(l,i+l,it2,i+3,i+4) . . . . L(l,j+lJtZ,j+3,jt4) = O 

L(l,i,i+l,i+2) L(l,i+l.i+2,i+3j . L(l,j+l,j+2,j+3)L(l,j+Z,j+3,j+4) '0 

L(l,i,i+l)L(l,i+l.itZ) . . . L(l,j+2,.?3)L(l,j+3,j*4) LO 

L(l.i)L(l,icl) L(l,it2,i+3) . . L(j+3,j+4) 50 

FIG. 3. A subpyramid structure of Fig. 2. The determinant at the apex depends on all invariants 
occt&ng in the remaining determinants, plus one more: s~+~,+~ . 
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Conditions L(i, i + 1) < 0 

Note that there are n - 2 equations (for i = 1, 2,..., n - 2) involving only n - 3 . . mvarrants s12 , s13 ,..., s,,-, . How they limit the ranges of the invariants may be seen 
by a straightforward analysis. Write 

L(i, i + 1) = -[s~(+~ - (s,‘!” + mi+l)“lbli+l - (dtf2 - %+3”1 G 0. 

For i = 1 only s12 is involved and the inequality may be satisfied by s12 3 (m, + m2)2, 
not surprisingly since $4’ is the total cm energy of incident particles i and 2. 

For i = n - 2 the only invariant involved is s~,,-~ and by taking s,,-, > (m,-, + 
n~,,)~ the inequality is satisfied. 

For i = 2, 3,..., n - 3 the relevant condition for satisfying the inequality is 

112 
%i+l \ sli - %+l 

< l/2 (7) 

which gives an upper limit to sloI in terms of sIi . 
By reordering (7), making the replacement i + i + 1, and using the resulting 

inequality as a recurrence relation a lower limit to sIi+l (including the case i = 1) 
may be found: 

In summary, then, conditions (6a) yield the limits 

hi+d+) = (4i2 - mi+A” 

G+~(-) = ( f mi), 
j=if2 

for i = 2, 3,..., n - 3 (8) 

along with s,, > max [(ml + m22), (xyE,m,)2]. 

Conditions L(I, i, i + 1) > 0 

Each of these conditions (for i = 2, 3,..., it - 2) can be satisfied by restricting the 
range of a single invariant, S2i+l . Notice that L(l, i, i + 1) is quadratic in yli+I and 
so via (4) is also quadratic in s2i+l . Thus use of (B4) gives the limits, 

S2i+kk) = %I + %+I - Y,i+,FF) 

= k + %+I - (V(1, i, i + l)li+,fJ F [L(l, i)L(i, i + I)]l12)/L(i) (9) 

= $11 + hi+1 - (YliYii+l F [LU, Wi, i + 1)1/2)/yii . 
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Conditions L( 1, i, i + 1, i + 2) < 0 

These conditions (for i = 2, 3,..., n - 3) are satisfied in much the same manner as 
conditions (6b), by restricting the ranges of the s~+~<+~. Indeed, using (B4) the limits 
are: 

si+1i+2w = hi + %+z - Yii+z(W 

= sli + hz - (VI, i, i + 1, i + 2)ii+20 
5 [L(I, i, i + l)L(l, i + 1, i + 2)]1/2)/L(l, i + 1). (10) 

Conditions L(I, i, i + 1, i + 2, i $ 3) = 0 

By again using (B4) two allowed values of each of the dependent invariants si+li+3 
(for i = 2, 3,..., n - 4) can be found: 

si+li+3(i) = sli + Sli--3 - .Y*i+3(?1) 

= hi + sli+3 - (VI, i, i + 1, i + 2, i + 3)~+~~ 
T [L(l) i, i + I, i + 2)L(l, i $ I, i + 2, i + 3)]‘/“)/L(l, i + 1, i + 2). 

(II> 

This dichotomy, corresponding to two distinctly different configurations of momenta 
[4], is the origin of the 28-5-fold summation in (5). That is, C 1 M,, I2 = sum of 
/ MBa j2 evaluated at all of the values of s. , , li+3 given by (1 l), and the following values 
of &+1i+4 * 

Conditions V(1, i, i + 1, i + 2, i + 3, j -+ 4)ij+4 = 0 

Here (B3) is used to find the allowed values of the dependent invariants sjLlji4 
(forj = 2, 3 - = ,..., n 5; i 2, 3 ,..., j): 

&+1j+4 = Sli + &j-t4 - Yij+4 

= hi + &+4 

- V(1, i, i + 1, i + 2, i -f 3, j + 4)ii+4,/L( 1, i $- I, i + 2, i t- 3). (12) 

The cofactors on the RHS of (11) and (12) may be evaluated in a systematic fashion 
using (Bl). Indeed, note that 

v(l) i, i + 1, i + 2, i + 3)gi430 = - 1 v(l) i + 1, i + 2, i + 3)ki+3 yik 

k 

with k=l,i+l,i+2, 

1/(1, i, i + 1, i + 2, i + 3,j + 4)ij+& = - c v(I, i + 1, i i 2, i $ 3, j T 4)Z&Jy,k 

= c k, i + 1, i + 2, i + 3h yikyli+3 

I;,1 

with k,I=l,i+l,i+2,it3. 
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Thus if the basic cofactors (3 x 3 determinants) V(1, i + 1, i -I- 2, i + 3)kI with 
i = 2, 3,..., n-4 and k,l=l,i+I,i+2,i+3 are known all the required 
cofactors of larger dimensions may be generated from them in a sequential manner. 
Furthermore the basic ones are functions only of the independent invariants and can 
be evaluated once the latter quantities are known. Unfortunately difficulties stemming 
from exceptional regions of the physical region preclude using this method for evaluat- 
ing (11) and (12). Section 4 is devoted to a careful tratment of this problem. 

4. EXCEPTIONAL REGIONS AND THE DEPENDENT INVARIANTS 

At this stage in the development the cross section is given by (5) together with 
(8)-(10) which specify the ranges of the independent invariants and with (1 l)-(12) 
which specify the dependent invariants in terms of the independent ones. All of this 
formal work stems from an earlier paper [4] although a different notation was used 
there. Similar treatments have been given by Poon [6] and, with the exception of Eqs. 
(I l)-(12), by Byckling and Kajantie [2]. No one has as yet directly handled the diffi- 
culties caused by the exceptional regions. 

With the present choice of independent invariants the exceptional regions of concern 
are those where some L(I, i, i + 1) + 0 which can occur by having szi+r approach 
either of its limiting values, s~~+~( 5) of (9). This results in the nominally independent 
invariants sii+I and Si+li+s becoming dependent invariants for by (10) their ranges 
shrink to zero and, furthermore, cause L(1, i - 1, i, i + 1) and L(1, i, i + 1, i + 2) 
to vanish as can be seen by using (B5). A more serious difficulty arises when solving 
L(1, i - 1, i, i + 1, i + 2) = 0 for Sii+p because in (11) (with i + i - 1) both 
numerator and denominator vanish in the exceptional region. Similarly, several 
invariants given by (12) are also defined by expressions that have vanishing numerators 
and denominators-those that involve L(1, i - 1, i, i + 1) or L( 1, i, i + 1, i + 2) in 
the denominator-in the exceptional regions. These O/O situations result in large 
inaccuracies in machine computations and a method for avoiding such numerical 
disasters is presented below. Such occurrences are quite common when modeling 
peripheral reactions. For in these reactions the matrix element may typically contain 
a factor exp (A s~~+~), with A > 0, thus enhancing the importance of generated 
events for which the value of the 4-momentum transfer Szi+l is near its upper limit. 

A successful resolution of these difficulties begins by replacing the independent . . mvanants si+li+p by angles &+, defined by (compare (10)): 

%+1i+2 = sli + $i+2 - (W, i, i + 1, i + %+z~ 

+ cos +i+l[L(l, i, i + l)L(l, i + 1, i + 2)]‘/“)/L(l, i + 1). (13) 
Then according to (B2) it follows that 

V(1, i, i + 1, i + 2)ii+2 = -COS $i+JL(l, i, i + l)L(l, i + 1, i + 2)]lj2 (14) 

and from (B5) that 

L( 1, i, i + 1, i + 2) = sin2 4i+l[L( 1) i, i + l)L(l, i + 1, i + 2)]/L(l, i + 1). (15) 
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A direct benefit [2,4] of this change of variable is that the denominator factor 
[ --L( 1, i, i + 1, i + 2)]‘12 in (5), which vanishes at the limits of integration, is removed. 
For, by use of (13) and (15) 

J’ &+I ,+,1-W , i, i + I, i + 2)]-lj2 = J d~~+J--L(1, i + l)l-‘1” (16) 

with $i+l(-) = 0 and 4i+l(+) = ~7. 
The angle $i+l can be interpreted geometrically [4] as the azimuthal angle of the 

vector pi+3n (= -P~+~) in the Lorentz frame where pi+2n = 0, where P1 (= -pr) is 
along the +z direction, and where pi+1 (= pi+J lies in the x-z plane with positive 
x component. In other words 

cm A+1 = (P1 x Pi+34 * (PI x Pi+J I Pl x P&-an I I PI x Pi+1 I 

with pi+Zn = 0. This is explored more fully in Appendix E. 
In a similar fashion dichotomic variables ri+l , which can take as only the values 

+ 1 and - 1, are introduced (compare (11): 

si+1i+3 = sli + s1i+3 - (W, i, i + 1, i + 2, i + 3hi+30 

+ ri+,[L(l, i, i + 1, i + 2)L(l, i + 1, i + 2, i + 3)]1/2)/L( 1, i + 1, i + 2) 

(17) 
leading to 

V(1, i, i + 1, i + 2, i + 3)ii+3 

= --ri+,[L(l, i, i + 1, i + 2)L(l, i + 1, i + 2, i + 3)]‘j2. (18) 

The reason for introducing the quantities 4i+, and ri+r will become clearer below. 
In passing, it may be noticed from (13) that even when L(1, i, i + 1) ---f 0 and the 
range of s~+,~+~ shrinks to zero the angle &+r remains unrestricted and thus retains 
its status as an independent variable. The dependent invariants which come from 
solving (6e) will ultimately involve $i+l and ri+r rather than si+li+2 and s~+~~+~, 
respectively. Now, as a preliminary step in handling Eqs. (6e), define a set of modified 
cofactors: 

VU, i, i + 1, i + 2, j + 4h3+* 
JW9 iv i + l9 i + %.i + 4h+4 z [-~(l, i + 1, i + 2) ~(1, i, j + 1, i + 2jp2 p 

(194 

W(1, i + 1, i + 2,j + 4)i+lj+4 G 
V(1, i + 19 i + 23.i + 4)i+lj+4 

[--L(l, i + 2) L(1, i + 1, i + 2)]li2 ’ (19b) 

WY i + 2, j + 4)i+~i+~ f 
W, i + 2, j + 4)i+2i+4 
I--L(1) L(1, i + 2j11,2 . (19c) 
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In Appendix C the following recurrence relations are established for the modified 
cofactors of (19) forj = 2,3 ,..., n - 5 and i =j,j - l,..., 2: 

W(1, i, i + 1, i + 2,j + 4)ii+4 

= -ri+1 
I - cos $i+2W(1, i + 1, i + 2, i + 3, j + 4)i+~+~ 

W, i + 2, i + 3h+~+~ 
+ [L(l, i + 2) L(l, i + 3)]‘/” sin h+2WL i + 2, i + 3, j + 4)1+e3+4 

L(1) L(1, i + 2, i + 3) 
+ ll L(l, i + 2) L(l, i + 3) I 

v2 
sin &+a W1, i + 3, .i + 4)i+3,+4 1 ; PW 

w(1, i + 1, i + 2,j + 4)i+lj+4 

= - sin +i.+zW(l, i + 1, i + 2, i + 3, j + 4)i+lj+4 

w , i + 2, i + 3)i+2i+3 - [L(I, i + 2) ~(1, i + 3)-~1/z cos 4i+2W1, i + 2, i + 3, j + 4)i+23+4 

[ 
L(1) L(1, i + 2, i + 3) - 
L(l, i + 2) L(l, i + 3) 1 U2 

COS A+2 W9 i + 3, j + 4)i+33+4 ; W’b) 

ml, i + 2, j + 4)i+2i+4 

E-..- $’ fy’:)$ i z ii ]l” W(1, i + 2, i + 3, j + 4)<+2j+4 
9 3 

v(l, i + 2, i + 3)i+zi+s 
+ [L(l, i + 2) L(1, i + 3)11/2 w(ly ’ + 3, j + 4)i+gi+4 * cw 

Equations (20) can be used as recurrence relations on i to calculate W(1, i, i + 1, 
i+2,j+4)ij+4, WI, i + 1, i + 2,j + 4)i+li+4 , and WI, i + 2, j + 4)i+2,+4 begin- 
ning with i = j. Initial values for the modified cofactors on the RHS of (20) are 
therefore needed. They can be obtained by using (14), (15), and (18) in (19): 

W,j + l,j + 2,.i + 3,j + 4)i+~+~ 

- [ 

L(1, j + 4) U2 ~31) -Wj + 3, j + 4) v2 -- - 
L(1) 1 [ L&j + 3) L(l,j + 4) I sin $Lf5+2 ; GW 

WI, j + 2, j + 3, j + 4)3+2f+4 

lj2 =..-... - 
[ 

L(l, j + 4) V2 L(1) LO, j + 3, j + 4) 
L(1) I 1 L&j + 3) L(Lj + 4) I cm A+3 ; (21b) 

WU, j + 3, j + 4)3+3j+4 

C L(1, j + 4) 1 l/2 =- W, j + 3, j + 4)i+9j+4 
L(1) Ml,i + 3) L(1, j + 4)11j2 ’ cw 
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Finally (12), (13), and (17) may be rewritten in terms of the modified cofactors of 
(19). There manipulations are carried out in Appendix D with the results: 

Si+li+2 = Sli + sli+2 - 
W, i, i + 2hi+20 L(l, i) 1/2 - 

L(l) + I-T(iy- 1 Wl, i, i + 2)ii+2 

L(l, i) l/Z + cos A+1 [ - m] [- L(1, i + 2) lj2 L(1) L(1, i, i + 1) ‘P 
L(l) I [ L(l, i) L(l, i + 1) I 

L(1) L(l, i + 1, i + 2) lj2 
’ L(l,i+ l)L(l,i+2) [ 1 for i = 2, 3,..., n - 3; (22) 

v(l, iv i + 3)ii+30 . 112 
&+1i+3 = hi + hi+3 - 

L(l) 
+ [A&L 

I I 
RI, L i + 3)ii+3 

- 
[ 

ki:i k’z;:: j 1 :i]lia W(1, i, i + 1, i + 3)ii+3/ 

- f-g+1 sin &., sin &+, [- --$#J-I”’ [- “(‘ill) 3)]“2 

x L(l,i)L(l,i+ 1) [ 
L(1) L(1, i, i + 1) lj2 1 [ L(1) L(l, i + 2, i + 3) lp 

L(1, i + 2) L(1, i + 3) 1 
for i = 2, 3,..., n - 4; (23) 

Vl, 6 j + 4)~+~~ 112 
Ji+1i+4 = hi + %+4 - 

L(l) 

+ [-A!& 
3 

x 
I 
Ftl, i, j + 4)ij+4 - [ 

L(1) L(1, i, i + I) U2 
L(l, i) L(l, i + 1) 1 Wtl, 6 i + l,.i + 4)ij+4 

- sin +i+lw(ly i, i + 1, i + 2, .i + 4)ij+41/ 

for j = 2, 3 - = - ,..., n 5; i j,,j l,..., 2. (24) 

The bar over the modified cofactors in these last three equations signifies that the 
cofactor is evaluated subject to the condition that the next higher order cofactor 
vanish. Specifically 

Fv(1, i, k)ik = W(1, i, k)il, subject to W( I, i, i + 1, k)i, = 0, 

F(l, i, i + 1, k)i, = W(1, i, i + 1, kh subject to W(1, i, i + 1, i + 2, k)ik = 0. 

The imposition of these conditions is very easy if Eqs. (20), extended to include 
i, j = 0, 1 are used to evaluate the barred modified cofactors: the first term on the 
RHS of both (20b) and (2Oc) is set equal to zero. Relations (20) can thereby be used 
with j = 0, 1, 2 ,..., n - 5 and i = j, j - l,..., 0 when evaluating (22)-(24). 

The scheme as outlined in this Section for calculating siflifB , Si+li+s , and .s$+~~+~ , 



RELATIVISTIC PHASE SPACE INTEGRAL 257 

although not too transparent, does resolve the earlier O/O numerical difficulties 
associated with the exceptional regions. For notice that the determinants L(1, i, i + 1) 
whose vanishing caused the trouble in (lo), (1 l), and (12) no longer appear in crucial 
positions; they were suppressed by use of the modified cofactors (19). The evaluations 
in (22), (23), and (24) are thus uneventful and are straightforward to implement on a 
computer. 

As a final point notice that several determinantal factors keep recurring in the above 
equations as coefficients of the modified cofactors. These factors are functions of the 
invariants that occur in the lower two rows only of the physical region pyramid of 
Fig. 2. In totality they are: 

I. L(1, i) 
-L(1) 1 

U2 for i = 2, 3 ,..., n - 1, 

C 
L(1) L(1, i, i + 1) 1 U2 L(1, i) L(1, i + )l for i 2, = 3 ,..., n - 2, 

W, i, i + l)~+~ = - [L(l, i) L(1, i + l)]‘/” for i 2, 3 ,..., n 2. 

5. SUMMARY 

A guide to the final equations suitable for the numerical evaluation of the n-particle 
phase space integral and computation of the nonlinear dependent invariants is as 
follows. 

The expression for the total cross section, valid for n 3 4, is (from (5) 

(26) 

where I Moo, I& = I MBa I2 averaged over all allowed values of the dependent invariants 
(if any) for fixed values of the independent ones and where the limits of integration are 
given by (8) for sli+l and by (9) for sZitl . 

The evaluation of the independent invariants si+lf+2 , which were replaced by 
angles di+, , (for i = 2, 3 ,..., IZ - 3) and the dependent invariants si+li+3 (for i = 
2, 3,..., n - 4) and s~+~~+* (for j = 2, 3 ,..., n - 5 and i = j,j - l,..., 2) is more 
involved. The procedure is to use (20) as recurrence relations on i initialized by (21) 
to systematically find the modified cofactors Wand W which in turn are used in (22), 
(23), and (24) to obtain the remaining nonlinear invariants. Notice that the meaning 
of I7 is spelled out in the paragraph following (24) and that ri+l , which is involved 
in the definition of Si+li+s , takes on only the values + 1 and - 1. 

581/29/2-8 
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As mentioned in the Introduction these equations have all been successfully 
incorporated into a Monte Carlo numerical integration program [3]. 

APPENDIX A 

Several determinantal identities and other useful properties of determinants are 
presented here. Some of these can be found in earlier works [4, 161 but this Appendix 
contains the essential features of the derivations. The results are summarized in 
Appendix B. For ease of manipulation the notation used in this Appendix A differs 
from that used elsewhere in the paper. 

Consider a square matrix (Q,) with determinant X = det(x,,). Let Xab...c denote 
the principal minor of X with rows and columns a, b,..., c deleted and let Y(u, b,..., c),~ 
denote the cofactor (signed minor) of the element x,, of Xaa...c . 

By an expansion due to Cauchy [ 171 

x = - 2 Y@),, x,bxbo + x,x,, * (Al) 

a,c#b 

But by an expansion of X in terms of the elements of the bth column 

x = c yab&b + xbxbb * (A24 
a#b 

Equating these two expressions for X yields 

yab = - c Y@)ac xbc 
c#b 

= - c; b y(b),, xbc - xabxba 

-Y abo - XabXba 

where Y&o is Y,b evaluated at xba = 0. 
Similarly, by expanding X in terms of the elements of the bth row 

x = c ybcxbc + x,x,, 
c#b 

and equating this expansion to that in (Al) yields 

yb, = - c y(b)ao x,b 
a#b 

= - ai$l c Y(b),, &b - xbcxcb 

= Y bco - xbc&b * 

(A34 

(A44 

Wa) 

Wb) 

(AW 

(AW 

WV 
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Of course, for a symmetric matrix (x& there is no distinction between the sets of 
equations (A2a)-(A5a) and (A2b)-(A5b). 

Several very important identities to be displayed shortly are based on the Jacobi 
ratio theorem [18]. When applied to the matrix (xab) the theorem states that 

where: 
[adj(x,,)](“) = X”-l * adjo)&,) 

(i) adj(x,,) 3 (Y,,) is the (adjugate) matrix obtained by replacing the elements 
of (x,,) by their cofactors Y,, and transposing the result. 

(ii) [adj(xab)ltk) is the kth compound [I91 of adj(+,); that is, the matrix whose 
elements are minors of adj(x,,) of order k. 

(iii) adj(lc)(x,,) is the kth adjugate compound [19] of (x,~); that is, the transpose 
of the matrix whose elements are the cofactors in (x,~) of minors of order k. 

The desired results follow for the choice k = 2. In this case the theorem reads 

or 
yea Yd, 
YCb Ydb = x . W&b 

or 

YC,Ydb - y&z yea = x * Y(YCJdb 

where Y(Y&, is the cofactor of the element xdb in the cofactor Y,, . 
Particularly useful identities result from the choices: 

(a) c = a, d = b: X,X, - YaaYaa = X . X,, , 

(b) c = a: X,Y,, - Y,,Y,, = X . Y(a),, . 
646) 

647) 

As an example of the use of (A6) with a symmetric matrix (xab) substitution of (A5) 
into (A6) yields an’expression for X which is quadratic in xnb = xbo : 

x = -x,&J + 2YnbP,b + (X,X, - Y,“,,)/X,b 
which may be written as 

x = -xabkb - %b(S)Ik7l - &d-)1 
where 

648) 

are the solutions of X = 0. 
Two more identities which will be used extensively in Appendix C follow from 

(A3)-(A5), (A7). In deriving these it should be noted that the properties derived 
above for the determinant X can equally well be applied to any principal minor. 
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Then 

y(b)ac ycb = - 1 Y(b),c Y(b),, Xbd 
d#b 

and 

= - zb [XbcY(b),d - xbY@c),d] Xbd 

= xbcyab - xby(c),b 

y(a)bc Y(b),a = c Y(Ub)dc Xdb 
[ d#a,b I[ , e; b wJ)c, xae 

I 

= d :a b Y(ab)dc Y(ub)ca XdbXae 
. , 

= d ;a b [Xab,Y(Ub),, - x,b y(Ubc)d,] X’dbx,, 
, * 

= dz b [-~abcY(@da + xabY(bc)d,l xdb 

= Xabc[Yba + Xab&bl - %b[Y(c)ba f Xabcxabl 

= XabcYba - &bY(C)ba . 

APPENDIX B 

by (A3a, b) 

by (A7) 

by (A34 

by (AW 

(AW 

The important results of Appendix A are summarized below in the notation of the 
text: L denotes the determinant of a symmetric matrix with elements y,, , L(u, b,..., c) 
denotes the principal minor of L with rows and columns a, b,..., c retained, and 
V(a, by.., c)~~ denotes the cofactor of the element yps of L(u, b,..., c). To reduce the 
number of indices exhibited 01 will be an inclusive label denoting retained but un- 
displayed rows and columns of L and its minors. For example L(u, b,..., c) might be 
written as L(a), L(a, a, b), L(a, c), etc., depending on which indices need not be 
displayed. 

The results are 

(a) (from A3) 

v(% a, b)ab = - 1 v(a, dze ybc , WI 
c=oi,a 

(b) (from A5) 

v(‘% a, @ab = v(% a, ‘%abo - L(Or) Yab 1 

where V((Y, a, b)abo = V(ol, U, b)ab evaluated at Yab = 0. 
Thus V(cu, a, b)ab = 0 may be solved for 

Yab = I/(% U, b)abo/L(~). 

VW 

(B3) 
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(c) (From A8) L(ol, a, b) = 0 is quadratic in yab and has the solutions 

Furthermore, 

U% a, b) = -J34ba, - Yab(+)llYab - Yd-)I. 

Finally there are four important identities: 

(d) (from A6) 

V(a, u, b)Z, = L(a, a) I.($ b) - L(a) L(a, a, b); 

(e) (from A7) 

(B4) 

035) 

036) 

W, a, 6 ~)a, Ua, a, b, c),, = L(a, a, b)T’(ai, a, b, c),b - L(a, a, b, c)V(ol, u, b),a ; 

037) 
(f) (from A9) 

Ua, a, chc %G a, b, CL, = Ua, 4% a, b, c),ti - L(a, a, c)V(a, a, b)ab 

(g) (from AIO) 

038) 

v(a, b, & V’(o1, a, cl,, = Uoc)V(~, a, b, c),r, - L(cY, c)V(ci, a, b)ab . 039) 

APPENDIX C 

The purpose of this Appendix is to derive the recurrence relations of (20); that is, 
formulas that will allow the iterative evaluation of the cofactors V(1, i, i + 1, i + 2, 
j + 4)ii+4 9 V(1, i + 1, i + 2, j + 4)i+li+4 , and V(1, i + 2, j + 4)i+2j+4 . Such expres- 
sions will be found by making extensive use of (B8) and (B9). 

VU, 4 i + 1, i + 2, j + 4)ij+4 

By(B9)withol= l,i+ l,i+2;u=i,b=j+4,c=i+3andusingthephysical 
requirement (6e) that 

it follows that 

V(1, i, i + 1, i + 2, i + 3, j + 4)i,+4 = 0 (Cl) 

Ul, i, i + 1, i + 2,j + 4)i,+4 

= _ W,i,i+ l,i+2,i+3)ii+sW,i+ l,i+2,i+3,j+4)i+aj+r. (c2) 
L(1, i + 1, i + 2, i + 3) 
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At this stage it need only be imagined that (Cl) has been solved (for Si+rf+&. Recur- 
rence relations (20), based on (C2) and several following equations, will then yield 
the actual value of the cofactor on the LHS of (C2). Subsequently, in (24) and Appen- 
dix D, this cofactor will be used to finally solve (Cl) for si+lj+a . 

By (B8) with 01 = 1, i + 2; a = i + 3, b = j + 4, and c = i + 1 it follows that 

V(1, i + 1, i + 2, i + 3, j + 4)i+3i+4 

V(1, 

i + 

1, i + 2, i + 3)i+li+3 V(l, i + 1, i + 2, i + 3,j + 4)i+~+4 = 
L(1, i + 2, i + 3) 

+ 
L(1, i + 1, i + 2, i + 3) V(1) i + 2, i + 3, .i + 4)i+3j+a 

L(1, i + 2, i + 3) 
(C3) 

By(B8)witha!=l;a=i+3,b=j+4,andc=i+2itfollowsthat 

W, i + 2, i + 3,j + 4h+3i+4 

= W, i + 2, i + 3)i+2i+3 V, i + 2, i + 3, j + 4)i+ti+4 
Ul, i + 3) 

+ 
L(1, i + 2, i + 3) V(l, i + 3,j + 4)1+~+~ 

L(1, i + 3) 
K4) 

Finally (C4) may be substituted into (C3) and the latter may then be substituted 
into (C2) to give 

V(1, i, i + 1, i + 2, j + 4)ij+4 

( 
V(1, i + 1, i + 2, i + 3)i+li+3 V(1, i, i + 1, i + 2, i + 3)ii+3 

x V(l) i + 1, i + 2, i + 3 j, + 4)1+~+4 ) ==Z-- 
L(1, i + 2, i + 3) L(1, i + 1, i + 2, i + 3) 

( 
W, i + 2, i + 3)i+~+3 V(1, i, i + 1, i + 2, i + 3)i~+~ 

x V(1, i + 2, i + 3, j + 4)i+2jt4 ) - 
L(1, i + 3) L(1, i + 2, i + 3) 

_ V(1, i, i + 1, i + 2, i + 3hf3 V/(1, i + 3, j + 4)i+3j+4 
W, i + 3) 

(W 

V(l, i + 1, i + 2,j + 4)i+0+4 

By (Bg) with 01 = 1, i + 2; a = i + 1, b = j + 4, and c = i + 3 it fobows that 

V(1, i + 1, i + 2,.i + 4)i+1i+4 

= L(1, i + 2) V(1, i + 1, i + 2, i + 3,j + 4)i+rj+4 
L(1, i + 2, i + 3) 

- v(1, i + 1, i + 2, i + %+li+3 v(l, i -k 29 i + 37 j + 4)i+3&4 . 
L(1, i + 2, i + 3) 

(c6) 



RELATIVISTIC PHASE SPACE INTEGRAL 263 

Substitution of (C4) into (C6) then gives 

V(1, i + 1, i + 2,j + 4)i+1i+4 
L(1, i + 2) V/(1, i + 1, i + 2, i + 3,.i + 4)i+1j+4 

L(1, i + 2, i + 3) 

( 
V(1, i + 2, i + 3)i+2i+3 Ul, i + 1, i + 2, i + 3)1+1i+3 

x V(1, i + 2, i + 3, j + 4)i+2j+4 ) - 
L(1, i + 3) L(1, i + 2, i + 3) 

VU, i + 1, i + 2, i + 3)i+~+~ W, i + 3, j + 4)i+3i+4 - 
-w,i+ 3) (C7) 

W, i + 2,-i + 4)i+2j+4 

W, i + 2, .i + 4)i+2i+4 = 
L(1) VU, i + 2, i + 3,j + 4)i+2j+4 

L(1, i + 3) 
_ V(1, i + 2, i + 3)i+2i+3 VU, i + 3, j + 4)i+~+~ 

-W, i + 3) 
W3) 

The desired recurrence relations are expressed by (C5), (C7), and (C8). If the 
cofactors in these expressions are replaced by the modjied cofactors of (19) and if use 
is made of (14), (15), and (18) these recurrence relations become those of (2Oa, b, c), 
respectively. 

APPENDIX D 

It is shown in this Appendix how (12), (13), and (17) can be reexpressed in terms of 
the mod&Ted cofactors of (19) and (20). Use is made of the identities of Appendix B. 

L(1, i, i + 1, i + 2) = 0 

By(B9)witha=l;a=i,b=i+2,andc=i+l 

VU, i, i + l)ii+l V(1, i + 1, i + 2)i+li+z 

= L(J)V(l, i, i + 1, i + 2)ii+z - L(1, i + l)V(l, i, i + 2)ii+z Pl) 
= L(l)V(l, i, i + 1, i + 2)ii+20 - L(1, i + l)V(l, i, i + 2)ii+20 by (W, 

. VU, i, i + 1, i + 2)~+~~ 
. . 

LO, i + 1) 

= W, i, i + 2hi+20 + W, i, i + l)di+~ VU, i + 1, i + 2)i+li+2 
L(1) L(1) L(1, i + 1) 

= W, i, i + %+zo VU, i, i + 2)~+~ 
L(l) - L(1) 
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where the last step follows from (Dl) and the definition of barred cofactors: 

V(1, i, i + 2)ii+z L V(1, i, i + 2)ii+z subject to V(1, i, i + 1, i + 2)ii+z = 0. 

When the modified cofactors of (19) are introduced it is seen that 

W, 4 i + 1, i + 2)ii+20 
L(1, i + 1) 

= W, i, i + 2hi+zo 
- - -- L(1) [ 

L(l, i) V2 - 

L(l) 1 W(1, i, i + 2)ii+2 . (D3) 

Then (22) results when this expression is substituted into (13). 

L(l, i, i + 1, i + 2, i + 3) = 0 

By(B9)witha=l,i+l;a=i,b=i+3,andc=i+2 

VU, i, i + 1, i + 2)ii+2 W, i + 1, i + 2, i + 3)t+1t+9 
= L(1, i + l)V(l, i, i + 1, i + 2, i + 3)ii+3 

- L(1, i + 1, i + 2)V(l, i, i + 1, i + 3)ii+s 

= L(l, i + l)V(l, i, i + 1, i + 2, i + 3)ii+30 
- L(l, i + 1, i + 2)V(l, i, i + 1, i + 3)ii+30 by (W9 

(D4) 

. V(1, i, i + 1, i + 2, i + 3)iifs0 
. . L(l, i + 1, i + 2) 

= V(1, i, i + 1, i + 3)ii+~ + VU, i, i + 1, i + 2)~+~ V(1, i + 1, i + 2, i + 3)i+~+~ 
L(1, i + 1) L(l, i + 1) L(1, i + 1, i + 2) 

= V(1, i, i + 1, i + 3)i~+~, V(l, i, i + 1, i + 3)ii+3 
- L(1, i + 1) L(1, i + 1) CD% 

where the last step follows from (D4) and the definition of barred cofactors: 

V(1, i, i + 1, i + 3)ii+3 

= V(1, i, i + 1, i + 3)it+9 subject to V(1, i, i + 1, i + 2, i + 3)ii+3 = 0. 

By (B9) with (Y = 1; a = i, b = i + 3, c = i + I it follows by analogy to (D3) that 

VU, i, i + 1, i + 3)ii+30 
L(1, i + 1) 

= W, i, i + 3)ii+~ 
L(l) - [ 

L(l, i) l/2 - 
-L(1) I WI, i, i + 3)ii+2 . (W 
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Substituting (D6) into (D5) and introducing the modified cofactors of (19b) leads to 

W, 6 i + 1, i + 2, i + 3)~+~~ 
L(l, i + 1, i + 2) 

_ W, 4 i + 3)~+~~ _ 
[ 

L(l, i) ljZ - 
L(l) -L(1) 1 W(1, i, i + 3)ii+3 

L(l, i) II2 L(1) L(1, i, i + 1) V2 - 1 [ L(1, i) L(1, i + 1) I 
W(l,i,i$ 1,i+3)ii+3. (D7) 

Finally (23) results upon substituting this expression and (15) into (17). 

V(1, i, i + 1, i + 2, i + 3, j + 4)ij+a = 0 

By (B9) with (Y = 1, i + 1, i + 2; a = i, b = j + 4, and c = i + 3 

V(1, i, i + 1, i + 2, i + 3)ii+3 V(l, i + 1, i + 2, i + 3,j + 4)i+1j+k 
= L(l, i + 1, i + 2)V(l , i, i + 1, i + 2, i + 5.i + 4)iit4 

- L(1, i + 1, i + 2, i + 3)V(l, i, i + 1, i + 2,j + 4)ii+4 
= L(1, i + 1, i + 2)V(l, i, i + 1, i + 2, i + 3, j + 4)ii+40 

- L(1, i + 1, i + 2, i + 3)V(l, i, i + 1, i + 2, j + 4)ii+40 by @W 

. V(1, i, i + 1, i + 2, i + 3,j + 4)ij+40 
. . L(1, i + 1, i + 2, i + 3) 

m) 

= W, i, i + 1, i + 2, j + 4)ij+40 
L(1, i + 1, i + 2) 

+ V(1, i, i + 1, i + 2, i + 3)ii+3 VU, i + 1, i + 2, i + 3, j + 4)i+li+4 
L(l, i + 1, i + 2) L(1, i + 1, i + 2, i + 3) 

= V(l, i, i + 1, i + 2, j + 4)u+40 W, i, i + 1, i + 2, .i + 4)ii+4 
- L(l,if l,i+2) L(1, i + I, i + 2) (W 

making use of (D8) and the physical requirement (6e) that V(I) i, i + 1, i + 2, 
i + 3, j + 4)ii+4 = 0. 

By (B9) with 01 = 1, i + 1; a = i, b = j + 4, c = i + 2; it follows by analogy to 
(D4)-(D7) that 

V(1, i, i + 1, i + 2, j + 4)~+~~ 
L(1, i + 1, i + 2) 

= W, i, j + 4)i1+40 L(1, i) U2 - 
L(l) - -L(1) 1 W, i, j + 4)~+~ 

+ [-A!& L(1) L(l’ i’ i + I) “’ v(‘, i, i + 1, j + 4)ii+4. (DlO) 
L(l, i) L(l, i + 1) 1 
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Substituting (DlO) into (D9) and introducing the modified cofactors of (19a) leads to 

W, i, i + 1, i + 2, i + 3, j + 4)ij+40 
L(l, i + 1, i + 2, i + 3) 

= WY i, j + 4)ii+40 _ 
L(l) [ 

L(l, i) l/Z - 
L(l) 1 W, 6 j + 4)ij+* 

+ [A!& 1/Z L(1) L(l, i, i + 1) 1 [ I 
Uz - 

L(l, i) L(l, i + 1) Wl, i, i + Lj + 4)ii+4 

-[ 
L(1, i) 1/Z L(1) L(1, i, i + 1) 1 [ I 

ljz 
-L(1) L(l, i) L(l, i + 1) 

x 
[ 

L(1, i + 1) L(l, i, i + 1, i + 2) 1/Z 
L(l, i, i $- 1) L(l, i + 1, i + 2) 1 W(l, i, i + 1, i + 2,j + 4)ii+4 . 

When this is substituted into (12) and use is made of (15) the desired equation (24) 
is obtained. 

APPENDIX E 

Certain quantities of possible physical interest are expressed below in terms of 
invariant variables. This demonstration is made simply to indicate the usefulness of 
these variables. The quantities considered are (a) Treiman-Yang angles, (b) Toller 
angles, and (c) center of mass longitudinal and transverse momenta. 

It will prove convenient in each of the following cases to make use of the identity 
POI. 

eum~Akl)dk2)~(k3), euvAhMq2h(q3)~ 

k, .ql k, * q2 k, * q3 
- k, .ql k, * qz k, * q3 (El) 

k, .ql kx * q2 kz * q3 

where er&,, is the totally antisymmetric symbol (e ,,123 = t-1) and repeated 4-vector 
Greek indices are summed over using the Lorentz metric g,,, = diag [I, - 1, - 1, - 11. 

(a) Treiman- Yang Angles 

The angle r&+r introduced in Eq. (13) of the text is actually a Treiman-Yang angle 
1211. The physical significance of this angle is such that if the differential cross section 
in 4i+1 is flat then there is no dynamical correlation between particles in the set 
(3, 4,..., i + I} and those in the set (i + 2, i + 3,..., n}. In the context of the multi- 
peripheral model this means that no particle carrying spin is exchanged between 
particle i + 1 and particle i + 2. 

From Eq. (14) 

cos tiitl = -V(l, i, i + 1, i + 2)ii+2/[L(1, i, i + l)L(l, i + 1, i + 2)1/2 (E2) 
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although this is never needed since values of c#Q+~ are generated randomly during the 
course of the evaluation of the phase space integral. For illustrative purposes (E2) will 
be derived using the identity (El). 

Recall from the text that 

as A+1 = (P1 x Pi+m) . (P1 x Pi+,M Pl x Pi+an I I Pl x Pi+1 I) 

in the frame pi+Bn = 0. 
It is straightforward to show that this may be written in invariant form as 

~0s di+l = -eLluBv(Pl)r(Pi+3n)B(Pi+2n)v e~vo~(Pl)v(Pi+l)o(Pi+2n)T 
/{I e,ua,(pl),(pi+3,)B(pi+z,), I I e~vor(Pl)v(Pi+l)o(Pi+~~)~ 11. 

By using (El) as well as the relations pi+sn = -pli+z , pi+en = -pli+l , and 
pi+1 = pli+l - pli it follows that 

COS 4i+l = -@factor of Pli * Pii+2 in d(Pi , Pli , Pli+l , Pli+Z)I 

MPI 9 Pli 7 P1i+1)4P19 PIi+ 2 P1i+W2 

in terms of Gram determinants. This is just (E2). 

(b) Toiler Angles 

The Toller angle wi may be defined [IO, 201 as the angle between the normals to the 
planes of q1 , Pi+1 , and of qZ , Pi-1 in the frame Pi = 0, where q1 = P1 - Pi+en = Pgi+l 
and q2 g Pz - Psi-2 = -Pzi-2 . Specifically cos Wi = -&+I X Pi+l) * (pzi-2 X Pi-l)/ 
(I Pzi+l x Pi+1 I I ~2~2 X Pi-1 I) in the frame Pi = 0. 
The dependence of a multiperipheral amplitude on oi signifies that particles with 
nonzero spin have been exchanged between particles i - 1 and i and/or between 
particles i and i + 1. That is, there is a correlation among the momenta of particles 
i - 1, i, and i + 1. 

Putting the above expression in invariant form yields 

COS % = e,,p,(P2i+lX(Pi+l)s(Pi)v e~vo7(P2i-2)v(Pi-l)~(Pi)v 

/{I e~aBv(P2~+l)a(Pi+l)B(Pi)v I I e~v07(P2i-2)v(Pi-l)B(Pi)v 0. 

Using (El) as well as the relations p. a+1 = P2i+l - P2i 3 P; = P2i - P2i-13 and Pi-1 = 

p2i-1 - pzi-2 it fOllOWS that 

~0s oi = -{cofactor ofp,i-2 . pa+1 in A(p,i-2 2 p2i-1, pzi , pzi+J} 
ILAb- 3 P2i-lv pdA(p2i-13 pzi > Pzi+dI”’ 

in terms of Gram determinants. 
Notice that these Gram determinants are constructed from the vectors pzi . They 

have no simple relationship to the Gram determinants used in the text which were 
formed from the vectors pIr . Nevertheless the elements of the Gram determinants 
can be expressed in terms of the Mandelstam variables without difficulty. 
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(c) Center of Mass Longitudinal and Transverse Momenta 

In the center of mass frame let Bi be the angle between pi and P1 (= -I& = -pJ 
for i = 3, 4,..., n. Then the longitudinal and transverse components of pi are, respec- 
tively, 

(~2~ = ip,b34 and (pJL = j pi / sin ei . 

These may be put in terms of invariants by using the following relations 

IPi12=(Pix-Pl’Pl 

= [A2 - PAP,2h12 - Pl * Pl 
(E3) 

where use has been made of the fact that p12 = 0. 
In a similar manner 

Pl . Pi = (Pl)O (Pi), - Pl . Pi 

= bl2 ~Pll(Pl2MPl2 ~PiI(P12hl - Pl . Pi 
@4) 

= KPl2 'PlNP12 *Pi> - d2(Pl ViWlJ~2 

= @factor ofpl . Pi in 4pl , p12 , p&14p12). 

Thus, from (E3) and (E4) 

(pi> u = -k * pi/l p1 I = -{cofactor of p1 * pi in 4 p1 , p12 , pi)) 

a-4Pl 7 P12)4Ple11’2. 

Finally, by applying Eq. (A6) to d( pl, pip, pi) and its cofactors to obtain sin ei from 
cos ei , 

sin ei = V(P,,)~P~ , p12 , PW(P~, , PMP,~, PW~ 

it follows that 

(PA = I-BP1 3 P12 9 PiW(Pl2 3 P1W2- 

Again, all elements of these Gram determinants may be put in terms of the Mandel- 
stam invariants without difficulty. For example, 2p,, * pi = 

2P12 ’ (Psi - Psi-i) = [(Pl2 + P3i)’ - I$2 - &I - [(PC? + p3i-J2 - J&3 - J&-l] 
= Sli - Sgi - Sli-1 + G-1 . 
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